WEMCOHIDROSTAL punips

SCREW-CENTRIFUGAL IMPELIER OFFERS HIGH EFFICIENCY. CLOG-FREE PUMPING

WEMCO. HIDROSTAL PUMP Unique screw/centrifugal impeller permits clog-free pumping with $80 \%+$ efficiencies.

The screw/centrifugal impeller with open channel design - combines the clog-free features of a vortex pump... the gentle action of a screw pump... and the high efficiency of a centrifugal pump.
The screw section produces positive action. In clear liquid, it performs like an Archimedes spiral. In thick sludges, slurries, and suspended solids, it burrows like a corkscrew to start material moving and keep it moving.

The centrifugal section produces steep head-capacity curve for nonoverloading performance.

Combined, the screw/centrifugal action provides high, hydraulic efficiencies and clog-free pumping. The large, continuous open channel from suction to discharge - makes it possible to handle large, soft solids with efficiencies of more than 80%.

Performance and economic advantages:

1. High Efficiency - reduces power costs. (Connected H.P. can now cost as much as $\$ 1,000$ per H.P. per year.)
2. Clog-free Operation. No blockages mean minimum attention and minimum maintenance, except for periodic adjustments.
3. Gentle Action - prevents damage to delicate solids.
4. Steep Head-Capacity Curve minimizes interruptions in capacity, prevents motor overloads, and provides additional pressure to blow out plugs.
5. Low NPSH requirements help to keep thick sludges and large solids moving as available suction head decreases. It also reduces installation costs.
6. Positive suction flow - enables purmp to handie thick sludges.
7. Externally adjustable liner.
8. Abrasion resistant construction - with 550 Brinell. Hi chromeiron impeller\& externally adjustable suction liner available.

Efficiency

Smooth flow, and low turbulence produced by the screw/centrifugal impeller, keep hydraulic losses to a minimum. The result is pumping efficiencies unequaled by any other "clog-free" pump.

Clog-free

The large, open channel, from sucbion to discharge, produces highly efficient clog-free operation. The screw tip has a shoulder shield to prevent blade edges from hooking into solids such as long, tibrous materials.
So-caled non-clog pumps, such as standard one-port or two-port, are not really clog-tree because fibrous materials and solids can hang up on the

CONVENTIONAL NON-CLOG PUMP
Rags and fibrous materials hang up on loading edge.

WEMCO-HIDROSTAL PUMP
Rags and fibrous materials can't hang up in open channel.
impeller vane edge as they enter the suction. What's more, material must make an abrupt 90° turn between the inlet and discharge. Large, irregular objects can lodge here and cause clogging and possible mechanical damage if not quickly freed.

While vortex pumps also provide true clog-free performance, they lack the high efficiency of the WEMCOHIDROSTAL pump.

Applications requiring clog-free performance:

1. Raw sewages \& sludges.
2. Food handling.
3. Paper stock \& wood chips.
4. Sump cleanup.

Abrupt 90° change in flow direction

Gentle Action

Material enters the pump at a low entrance angle, where it flows through a smooth, open channel to the discharge... without abrupt changes of direction. This gentle action enables tragile material to move through the pump without damage. Vane pumps cannot provide this gentle handling because of the abrupt 90° turn, and high furbulence that material encounters.

Applications requiring gentle actions:

1. Crystalline compounds.
2. Bacterial floc.
3. Easily damaged fruits and vegetables.
4. Live fish. WEMCO-HIDROSTAL pumps have been selected by a major consulting firm and several utilities as the safest method of removing live fish from coolingwater inlets.

Steep head-capacity curve

The head produced by the WemcoHidrostal pump drops or climbs very quickly as flow rate changes, thus resulting in a "steep" slope. This type of performance is ideal for most applications.

1. Compensates for system head changes.
The head requirement of every pump depends on the piping, static lift, flow requirements, and resistance to flow of the material being pumped. These factors define the application's system-head requirements, which then "tell" centrifugal type pumps where they should operate on their own characteristic pump curve.
As liquid levels vary or sludge consistency changes, the system head curve changes, and the pump has to operate on a cifferent portion of its head capacity curve.
When the Hidrostal screw/centrifugal pump encounters system head changes, capacity changes are small, as shown on the curve. However, most non-clog pumps (vortex or vane) have very flat head-capacity curves, so a small change in the system head can substantially reduce capacity. To maintain the flow rate near original design these pumps often require expensive variable speed drives.
2. Supplies ample head reserve.

If a blockage occurs in the pumping systern's discharge piping, the normal system head curve steepens due to the large pressure resistance. With normal non-clog (vortex or vane) pumps there is a very small head reserve between the normal flow rate and pump shut-off with which to dislodge these blockages.
However, the WEMCO-HIDROSTAL pump, with its steep head capacity curve, offers a large head reserve which is often enough to blow out the blockage without having to rod or pig lines.

3. Produces "non-overloading" power curve.
The horsepower curve of the WEMCO-HIDROSTAL pump is relatively flat throughout normal operating range and in many cases actually begins to drop as capacity increases. This is because the head drops more quickly than the flow increases. Less work is therefore being done by the pump, so the HP requirement is reduced. It is impossible to overload the motor when the capacity increases due to a drop in head, so interruptions in
pumping due to motor overload are prevented.
Most vane and vortex pumps have constantly rising HP curves. Motors selected for specific operating points can become overloaded with a drop in head, and the only protection is to buy an oversized motor. Combined with the larger electrical starting equipment and service necessary to run this larger motor, the capital and operating costs of these pumps can be significantly more than the Hidrostal screw/ centrifugal pump.

Low NPSH requirements

NPSHR (net positive suction head requirement) is the minimum absolute pressure required to keep a pump performing effectively.

The WEMCO-HIDROSTAL has one of the lowest NPSH requirements of any centrifugal purnp. This is because its screw/centrifugal impeller produces a smooth, low-turbulence flow that gradually builds pressure without sustaining the high entrance losses usually associated with normal high-turbulence pumping.

The screw portion of the impeller actually acts as a suction inducer, but unlike ordinary inducer pumps, it can handle large solids.

Low NPSH requirements help to keep sludge moving as available suction head decreases. This is a substantial economic benefit, because it doesn't require additional construction, or special installation, to elevate the liquid source to meet a purnp's minimum NPSH requirements.

Applications requiring

low NPSH:

1. Hot liquids.
2. Low vacuum suction sources.
3. Lquids near theirvaporpressure
4. Heavy sludges or paper stock.
5. Siripper bottoms.

Positive suction flow for sludge handling

The corkscrew action of the screw impeller, plus its low NPSH requirements provide the suction flow necessary to start sludge moving and keep it moving. In addition, the steep head-capacity curve makes it possible to pump sludges of widely varying consistencies without changing speed. It also provides reserve head for dislodging temporary line blockages.
Positive displacement pumps may be ideal for handling thick sludges, but they are expensive, and have problems with large solids - usually requiring grinders in front of the pump. They are impractical for high-volume pumping, and require extensive maintenance. While vane pumps can handle some sludges, their capabilities are limited by the following factors:

1. Relatively high NPSH requirements make it difficult to start sludge moving and keepil moving.
2. Relatively flat head-capacity curves can't provide the reserve head necessary to compensate for changes insludge consistency.

Applications requiring

 positive suction flow for sludge handling:1. Paper mill waste.
2. Municipal and industrial sludges.
3. Viscous materials.
4. Medium density pulp stock.

Adjustable Liner

The clearance between the impeller and suction liner is a factor in any pump's performance and must be adjusted at intervals to compensate for wear. Wemco's optional adjustable liner easily does this by means of three external regulator screws. Other pumps, lacking this feature, must rely on shims between the case and suction piece. Those who have to maintain large pumps, or pumps in abrasive service, will especially welcome the adjustable feature.

Optional AbrasionResistant Impeller and Liner

For abrasive applications, the impeller and adjustable suction liner are available in 550 Brinell hardened Hi-Chrome iron (ASTM A532-III-A).

Applications Requiring

Adjustable Liner and/or Abrasion Resistance

1. Most gravity thickened sewage sludges (except secandary).
2. Sewage and slormwater.
3. Lift stations that handle high infiltration loads.
4. Lagoon sludges.
5. Most vertical installations.
6. Most horizontal installations with 6^{\prime} or larger pump sizes.
7. Woodroom, bark, and chip operations.

New, patented pump system - economical solution to varying inflow rates

The Prerostal prerotation system is a unique, economical, uncomplicated method of automatically adjusting pumping volume to varying inflow rabes using a CONSTANT SPEED MOTOR PUMP I combines the screw centrifuga impeller characteristics of the Hidrostal pump with a specially contigured vortex inducing chamber around the suction pipe of the pump. The chamber utilizes gravity to m part a fluid spin in the same direction of rotation as the pump impeller, and this spin produces a flow reduction without the necessity of changing pump speed.

Benefits include:

1. Lower owerall energy use than variable speed installations.
2. Less capital investment than ofien systems.
3. Less maintenance.
4. No sophisticated controls to service.

Your WEMCO representative will De happy to show you how this system can be of benefit to your specitic asplication. Askforbuleth P25-84.

WEMCO-HIDROSTAL PUMP FEATURES

Large shafts and oversize bearings extend bearing life.

Optional liner easily adjusts for wear with external regulator screws.

Irspection port.

Back pulout design permits removal of bearing housing and impeller without disconnecting the casing from the suction and discharge piping.

Spocial radially split packing box for easy replacement of deepest (front) packing rings.

WIDE RANGE OF SIZES

DIMENSIONS

HORIZONTAL BARE PUMPS

PUMP	3RA	A	B	0	E	F	0	H	K	M	N	0	P	U	V	x	γ	CP	D0	KEY	suc	DIS	
DSK. $\mathrm{H}_{1}-\mathrm{L}_{1}-\mathrm{M}_{1}-5$	D0S	13.25	1250	3.5	5.50	10.25	25	2.25		3.72	7.4	17.0	1.5	32 mm	2.8	8.5	6.5	26.3	6.8	$10 \times 8 \mathrm{~mm}$	4	3	
D4K-HS,-LT. 5										4.57		183				9.8	7.1	27.8	7.9			4	
E4K.S	E2S	16	14.57	12.0	7.00	11.57	$\mathrm{Se}^{56 \times 1}$		3	5.15	2.5	250	2	42 mm	3.0	13.4	8.6	30.8	10.4	12xbımm	6	4	
E5K-L.LM										9.1							31.5	5					
EFK-H,-LL. LS,-M, -S									5.42	9.6							22.1						
ESK-HD,-SS				15.6												10.9	33.9		8				
ESK-LL.-LS									5.94	30.7		16.7				9.1	32.1	13.3	6		8		
FaK-MH.-S	F2S	18.5	19.96	12.0	8.00	15.55	. 38	65×1		4	5.65	10.6	26.3	2.5	60mm	4.5	14.3	9.6	32.4	11.3	$18 \times 11 \mathrm{~mm}$	8	4
F6K-L,-M																		10.5	41.5				6
F6K-H,-S				15.0							5,75		31.1				16.7	13.0	43.5	13.2			
F1CK-MD																		12.7	44.3	15.6		10	11
FICK-HD.SS				13.0					7.50		36.7		18.7				13.4	450					

MUP	Bha	A	B	D	E	F	Q	H	K	M	K	0	P	4	V	X	Y	cp	D0	KIY	SUC	DIS
H5K-MHI--S	H2S	225	20.83	15.0	9.75	15.85	83	81×1.05	6	7.28	10.6	33.1	3.5	60 nm	4.5	18.1	11.0	42.4	14.1	$18 \times 11 \mathrm{~mm}$	5	
	H4S		27.85			21. 26					6.9			90 mm	5.9			41.6		$25 \times 14 \mathrm{~mm}$		
H8K-M	H2S		20.93	18.8		15.83				8.70	10.6	38.4		60 nm	4.5	20.9		45.7	16.3	$18 \times 11 \mathrm{~mm}$	10	8
	H4S		27.85			21.88					6.9			90 nm	S.7		12.9	51.9		$23 \times 74 \mathrm{~mm}$		
HBK. H .- S	HES		20.50			15.93					10.6			60 nm	4.5		15.7	48.4		$18 \times 11 \mathrm{~mm}$		
	H2S5		27.25			21.26					69			90 nm	5.7			54.6		2 zk 14 mm		

DIMENSIONS

HORIZONTAL BARE PUMPS

PUNP	BRE	A	A_{1}	B	0	$\underline{1}$	E_{1}	F	6	H	K	M	N	0	P	U	V	X	Y	cp	c0	KEY	SUC	DS	
16K-MH2 -8	115	28.25	29.04 18.0 2.04			1200	9.75	22.04	38	.81st.06	6	0.22	5.9	40.8	3.5	90 mm	5.9	22.8	14.7	55.1	17.6	12		6	
	14+75					26.64		7.0					59.7												
110k-M	119			29.04	24.0			22.04					4.8							59.1					
	$14+78$			33.64				36.54				9.76	30	49.8					17.0	60.5					
	I1S			29.04				22.94				9.16	1.9	49.5				25.6		62.1	20.5			10	
1106-12-5	14+75			33.64 \|				26.64					1.0						20	667					
LaK-MH,-S	L19	32	22.5	29.18	24.0		13.50	9.75				22.10		5.9									2 Sx 14 mm	16	8
	L4+7S			33.80		26.30							7.0									4			
LIEK.M	L1S			29.19	27.0	22. 18						11. 18	4.9	59.3				22.3			25.2	12			
	$4+78$			33.80		26.80							7.0												
L12K+H	L1S			29.19		22.18							59						20.9						
	L4+73			33.80		26.80							7.0							69.4					
LTKK.HS	L1S			29.19		22.19							19						220	853					
	L4+79			33.80		26.80							7.0							70.1					

DIMENSIONS

HORIZONTAL SIDE MOUNT PUMPS

Constant Speed and Variable Speed Stationary Control

STANDARO LEFT HAND ARRANGEMENT

OPTIONAL AJGHT HSND ARAANGEMENT

PJMP	8RG	MST0R FAAME	HA	H3	HC	H0	HE	HF	HG	HL	m0	7	SU5	DIS
03K-H, - L_{2} - M_{1}-S	L0S	143T-215T	20	47	31.2	11.5	13.5	-	3	8.8	20.0	6.5	4	3
04K-HS, -LT, -S					32.7					10.3	21.3	7.1		4
ELK-S	128	145T-2E4T	23	56	3.3	15	15	8		9.4	23.0	8.6	6	4
E5S-L,-LM		145T-254T			\$2.1					10.1		9.1		5
		1451-2641			\$3.6					10.6				
ESK-H,-LL, LS , M, -S		2051	26	67	40.2			6		5.9		9.6		
E8K-H0,-SS		182T-264T	23	56	41.4	13		8		12.4	33.7			8
		286T-324T	26	67	45.0			6		7.3		11.9	8	
E88-LL.LS		125T-264T	23	56	45.0			8		10.6		91	6	
	125	1自T-204T	26	56	45.3	15	15	B		12.8	29.3	8.5	8	4
FiK-NH,-S		206T-364T		67	4.9		15.5	6		11.6				
ftK-L-M		213T-284T		56	47.4	13.	15	8		14.9	34.1		θ	6
		206T-324T		67	51.0		15.5	6		13.7		16.6		
FtK-H.S		$213 \mathrm{~T}-284 \mathrm{~T}$		56	49.8		15	8		17.3		15.0		
		286T-365T		67	51.4		15.5	6		16.1				
F10K-MD	F28	213T-215T	26	56	50.3	21	15	8	3	17.8	3.7	12.7	10	10
		254T-326T		67	3J. 11		15.5	b		10.5				
F10K-HD.-SS		213T-215T		36	81.0		15	B		10.5				
		254T-366T		67	54.5		15.5	5		17.2		13.4		
$\mathrm{H} 5 \mathrm{~K}-\mathrm{NH},-\mathrm{S}$	H2S		25	67	51.0	19	17.5	6	4					
	H4S		31		56.3					14.6	$3 \% .1$	11.0		5
HIK-N	H2S		$\frac{21}{31}$		55.2	22				179	42.9	12.9		4
	H4S		31		60.11					17.9		12.9		
HHK-H,-S	H2S		28		58.0					20.7		15.3		
	H 4 S		11		62.18					20.7		15.3		
16K-MH. 5	11 S		13		62.1									
	隆		38		63.8					18.8	44.8	14.7	12	6

DIMENSIONS

HORIZONTAL SIDE MOUNT PUMPS

Motion Control

STANDARD LEFT HAND ARRANGEMENT

- 6 HOLES ON BASES 56 OR LONGER

PLMP	BRG	NOTOR FRANE	HA	H3	HC	HD	HE	HF	10	HL	40	Y	Suc	DS
COK-H,-L, - M - S	005	$145 \mathrm{~T}-215 \mathrm{~T}$	28	56	36.6	11.5	13.5	15	3	8.8	20.0	5.5	4	4
DAK-HS, LT, -5					37.1					10.1	21.3	7.1		4
E4K-S	E2S	1457-2847	23	67	42.8		15	8		9.1	28.0	8.6	6	4
E5K-L,-LM		1457.254T			43.6	15				10.1		91		5
E5K-H, -IL,-LS.-M,-S		145T-236T			44,1					10.6		96		
E6x-H0,-93		182T-2AET			45.9	18				12.4	33.7	109	8	5
ESX-LL.-LS		1457-2847			4.1					10.6	33.7	91	6	F
FSK-MH,S	F28	1827-324T	26	67	48.9	15	15.5	6		11.6	29.3	96	B	4
FaK-L.-M		2131-3241			51.0					13.7	34.1	10.6	8	6
F6K-H.-S		213T-324T			53.4	18				16.2		13.0		
F10K-MD		213T-324T			53.8	21				16.5	39.7	127	10	10
F10K H + D - S		213T-324T			54.5					17.2		13.4		

DIMENSIONS

HORIZONTAL DIRECT CONNECTED PUMPS

														BRE	FRAME	14 +	\%	FR2ME
PUNP	MOTOR FRAME	HA	HD	HE	Ha	HL.	H0	HT	Y	514	D15	$\begin{gathered} \text { Max } \\ \text { WIDTH } \end{gathered}$	CP	HB	$\begin{aligned} & \text { MAX } \\ & \text { LENGTH } \end{aligned}$	CP	H3	$\begin{aligned} & \text { MAX } \\ & \text { LENBTH } \end{aligned}$
$\begin{gathered} 16 \mathrm{~K} \\ -\mathrm{MH},-5 \end{gathered}$	3245 -3257	34	24	15.75	6	19718	46.8	6.37	14.7	12	6	35	65.0	74	93	59.7	枵	97
	364T-365T														97			101
	404T-405T											35		78	102		82	126
	444T-445T											39		42	168		88	113
[10k	404T-405T		30			23314	55.8	7.75	17.0		10	39	88.8	78	106	63.5	69	111
-M	444T-445T											42		52	112		64	117
[10K $\mathrm{H}_{2}-\mathrm{S}$	364T-365T					2615×16			20.2			39	82.0	74	104	65.7	78	109
	4041-4051.													T6	109		82	114
	444T-4<5T											42		82	115		80	120

DIMENSIONS

VERTICAL PEDESTAL MOUNT

PUMP	日月6	2	8	E	0	H	U	V	I	CP	00	MP	V0	VF	VS	TY	W2Y	SUC	Dis
DaK－H，－L，－M，－S	Ins	10．63	10.63	394	87	63	32 mm	2.8	8.5	38.57	6.9	41.58	18.75	4.69	13.38	6.1	10 atmm	4	2
D4K－H5，－1T－S									98	40．0才	7.9	43.01	19.34		13.97				4
E4K－S	825	15.75	15.75	6.89	． 71	88	42 mm	3.0	13.0	45.58	10.4	48.76	23．6？	6.69	16.60	8.0	12 abmm	6	4

DAK，D4K．EAK

PUMP	MOTDR FRANE	A	E	6	H	X	D9	VD	VS	VY	Suc	Dis	H2S ERG FRAME					H4S BFE FRAME				
													U	V	CP	M ${ }^{\text {P }}$	NEY	U	V	CP	NP	gEY
H5K－NH，－S	284TC－285TC	30	14	1	． 38	18.1	14.1	42.50	27.61	16.50	10	5	63 mn	4.5	73.92	79.47	$18 \times 11 \mathrm{~cm}$	98 mm	59	80． 14	86． 65	25.14 mm
	324TC－355TC															80.97					87.15	
H3K－M	284TC－28676					27.9	16.3	44.00	29.50			3			76.76	82.26				82.08	88.45	
	324TC－355TC															83． 76					88985	
H3K－H．－5	$3245 \mathrm{C}-355 \mathrm{C}$								32.26													
	$4047 \mathrm{C}-0057 \mathrm{C}$															85.64					91.03	

DIMENSIONS

 VERTICAL EXTENDED SHAFT

rump	BR0	A	8	E	6	\#	U	V	x	CP	00	v0	V7	vs	Y	WEY	8uc	Dis
DSK-H, L, - M , -S	005	10.73	11.63	3.94	B7	63	32 mm	2.8	8.5	36.57	6.9	18.76	4.69	15.38	6.1	10.8mm	4	3
D.4K-HS, LT, -S									9.8	40.01	7.9	19.34		11.97				4
E4K-S	E2S	15.75	15.75	6.88	31	. 88	42 mm	3.0	12.0	45.88	10.4	23.67	6.89	14.66	8.0	12 smmm	6	4

PUMP	606	A	E	0	H	U	V	X	CP	DD	VD	Vs	VY	KET	suc	015
ESx-L,-LM	ESS	20	9	75	38	42 mm	3.0	13.0	52.41	10.4	29.59	17,15	13.0	12x57m	6	5
E5x.H.LL, -LS, - M, S												17.70				
Eax-LL. LS									53.43		30.44	17.18				
EgK.HD,-SS		24	11					15.7	56.99	137	34.00	85.03	14.0		8	B
F4K-M -1.5	F2S	26	12			60 mm	4.5	14.3	62.22	11.3	32.50	23.76		18:11mm		4
F6§-L, - M											\$5.00	24.72				6.
FEK-H.-S								16.1	06.63	132		27.66				
F10K-H0		28	13									29.31	16.5		10	10
F10K-HD.-Ss								16.7	71.57	15.6	40.00	29.88				

FUMP	A	E	0	H	X	DD	vo	US	VY	suc	015	H2S BNS FRANE				HAS BRE FRANE			
												0	V	c)	KEY	U	V	CP	WEY
H56-MH.-5	30	14	1	88	181	141	42.58	27.61			5			73.42				80.14	
HSK.M								28.50	15.5	20	1							的	
HEK-H. 4					. 8	6.3	00	32.25			-	60 mm	45	0.70	$18 \times 11 \mathrm{~mm}$	90mm	5.8	4298	$25 \times 14 \mathrm{~mm}$
H12K.H0, $50 .-88$	34	16			25.6	22.0	54.00	$\frac{42.52}{41.02}$	19.0	12	12			\$1 56				87.78	
H12K M0					25.6	22.0	54.00	41,02	18.0	12				61.50					

Variety of Applications

There's a WEMCO pump available for every wastewater-handling job involving large solids, grit, shear-sensitive products, or heavy, viscous sludges.

WEMCO PUMPS

- MODEL C TOAOUEFLOW
- MODEL E TOAOUEFLOW
- HIDROSTAL SCREW CENTRIFUGAL
- MUNIFLO
ROTART: LOBE

- MODEL CE
 TOAOUEFLOW
 LIGHT GRIT
 HEAVY GRIT

There's a WEMCO pump available for every wastewater-handling job involving large solids, grit, shear-sensitive products, or heavy, viscous sludges.

(1) WEMCD

EnviroTech Pumpsystems
P.O. Box 209 (84110-0209)

440 West 800 South
Salt Lake City, UT 84101-0209
Telephone: (801)359-8731
Fax: (801)530-7531

