HPT Multistage Barrel Casing
Boiler Feed Pump
Sulzer Pumps – Striving to Serve You Better

Sulzer Pumps combines more than 135 years of experience in pump development and manufacturing with a deep commitment to fully understand the needs of our customers.

Our detailed process and application knowledge has allowed us to develop innovative pumping solutions for our focus segments including tailor-made systems. Our active research and development supports the customer-oriented approach.

Sulzer Pumps has sales and service facilities in major markets of the world to provide fast and flexible response and support.

HPT – Efficient and Reliable

HPT radially split barrel-casing pumps are specifically designed for boiler feed applications in thermal power stations. These pumps are optimized to provide high availability and high efficiency operation over an extended period of time, reducing operation and maintenance costs. Their robust construction and tolerance of changing conditions makes them particularly suitable for cyclic operation.

The pump’s efficiency is a result of its advanced hydraulic design and so does not rely on the use of close internal clearances. This is also the case for the rotor-dynamic design, which ensures low vibration by providing a high degree of damping throughout the life of the pump, even with the clearances worn to their maximum values.

Although the HPT is a well-established design, with many years of reliable operation, it has been continually updated to take advantage of technological developments. These include developments in precision casting, sealing technology and materials as well as the application of FE analysis and state-of-the-art manufacturing techniques.

Drawing of original 1905 Sulzer boiler feed pump with a balance disc. Sulzer has the original patent for disc/counter-disc balancing systems.
Design Features
• Horizontal, multi-stage barrel casing based on EPRI contract developments
• Maximum safety due to double casing design
• Full cartridge pullout design for rapid changeover
• Inspection and overhaul without disconnection of main pipe work
• Single or double entry first stage impeller available
• Axial thrust compensated by balance piston
• Design features to eliminate the need for pre-warming on most applications

Optimized Thermal Design
• The pump is designed to operate under cyclic conditions, without the need for pre-warming
• The design minimizes thermal distortion to avoid the reduction of internal clearances
• High strength materials are selected to accept thermal stresses
• Graphite stationary seals ensure secure sealing under all transient conditions

Shaft Seal Option

With Floating Rings
• Moderate leakage

Single Mechanical Seal
• Minimal leakage
• Low energy consumption

Fixed Throttle Bushing
• Simple and reliable design
• Less sensitive to dirt and flashing
HPT Design Features and Options

- Barrel design incorporates many design features resulting from Sulzer/EPRI research contract
- Maximum safety due to double casing design
- Pipework connections remain undisturbed during disassembly
- Barrel casing design provides maximum rigidity and accepts high pipe loads

Full cartridge pull out for rapid changeover

- Axial thrust compensation by balancing piston to avoid damage during transient conditions
- Long operating life regardless of the operating mode

Design features to eliminate the need for prewarming in most installations

- Removal of bolts, coupling hub, piston and thrust collar by means of a common hydraulic pump to simplify maintenance and reduce cartridge replacement time

Top or bottom facing nozzles welded or flanged; can be positioned to suit the planned installation layout

- Design of close running clearances
- Optimized labyrinth—high efficiency and good rotor-dynamic behavior
- Radial grooves—increased radial stiffness, reduced effect on rotor tilting and good rotor dynamic behavior
- Swirl break at balancing piston to maintain rotor stability even when internal clearances are worn

- Precision casting in chrome nickel steel
- Optimization of hydraulic profiles
- Kicker stage available
Optional Kicker Stage

- Integral impeller wear rings for longer life dimensioned to allow re-machining several times
- Double suction first stage available

Optional intermediate take-off possible

- Bearing housing fixed to pump cartridge through 360°
- Bearing provides high stiffness and damping to minimize shaft movement
- Anti-whirl journal bearings

Pure graphite stationary seal rings used

- Forged, low alloy steel barrel casing as standard; designed for long term cycling operation and to resist erosion-corrosion without the need for overlays
- High strength material to accept thermal shock
- Other materials possible to suit customer requirements

Shaft forged in chrome nickel steel
- Low L/D ratio
- Stable operation without critical speed problems
- Reduced vibration levels

Sliding pads to maintain alignment during thermal movements

Optional Double Suction

- Integral impeller wear rings for longer life dimensioned to allow re-machining several times
- Double suction first stage available

Optional Kicker Stage

- Kicker stage flow
- Kicker stage forged design for flow < 50 m³/h
- Kicker stage cast design for flow >= 50 m³/h
- Balance drum leakage flow
- Main discharge flow
HPT Features

Integral Cartridge Design

Advantages
- The cartridge is completely assembled outside the barrel case
- Prior to installation of the cartridge, the mechanical seals are set, the rotor is radially and axially adjusted and the axial thrust bearing clearance is set
- Quick cartridge changes for increased productivity
- Cartridge support for increased safety
- Cartridge includes the shaft, coupling hub, static and dynamic hydraulic parts, shaft seals, radial bearings and thrust bearing, balancing system, suction and delivery cover

Rotor Design

Advantages
- Shrunken on parts allow for high rotor balancing quality
- Shrunken on parts avoid fretting corrosion and minimize stress concentrations
- Shrunken on parts avoid loose parts on shaft during operation and result in lower vibration

Step 1
- Suspended and supported on rollers at DE

Step 2
- Suspended for re-rigging

Step 3 Final Installation

Rotor
- Shrunken on thrust collar, oil press fit
- Shrunken on balance drum, oil press fit
- Shrunken on coupling, oil press fit, parallel stepped or taper fit
- Impellers are shrunk on, have keys for torque transmission and use split ring for thrust loading
Diffuser and Impeller Design

Advantages
- Precision castings
 - High efficiency
 - Small hydraulic unbalance
- Thick impeller shrouds
 - High strength for high head
 - Natural frequency away from resonance, thus avoiding shroud breakage
- Continuous channel diffuser
 - High efficiency

Pressure Retaining Parts

Advantages
- Hydro test (1.5 x or 1.3 x \(p_D \)) of each pressure casing provides high safety

Analyzed with proven codes for high reliability:
- German vessel code AD, standard
- ASME section VIII, Division 1, optional
- FE for selected cases

Tightening System for Delivery Cover Studs

Advantages
- Accurate tensioning to required pre-load
- Fast cartridge change
Testing

Sulzer Leeds, UK Test Facility
- 10 MW electric motor at full speed
- Electric capacity to 16 MW
- Speed increasing gearbox with multiple ratios
- 30 MW gas turbine drive
- 365000 gallon wet sump, 30 ft deep
- 50 ton crane capacity
- NPSH testing
- Hot or cold testing

Materials

<table>
<thead>
<tr>
<th>Part</th>
<th>DIN material</th>
<th>ASTM material</th>
<th>Advantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barrel casing</td>
<td>10 Cr Mo 9 10, forged</td>
<td>A 182 Gr F22</td>
<td>• High erosion resistance</td>
</tr>
<tr>
<td>Delivery cover</td>
<td>10 Cr Mo 9 10, forged</td>
<td>A 182 Gr F22</td>
<td>• Good thermal transient properties</td>
</tr>
<tr>
<td>Impeller</td>
<td>G-X 5 Cr Ni 13 4</td>
<td>A 743 Gr CA-6MN</td>
<td>• High erosion resistance</td>
</tr>
<tr>
<td>Diffuser</td>
<td>G-X 5 Cr Ni 13 4</td>
<td>A 743 Gr CA-6MN</td>
<td>• Good cavitation resistance</td>
</tr>
<tr>
<td>Stage casing</td>
<td>G 17 Cr Mo 9 10</td>
<td>G-X 5 Cr Ni 13 4</td>
<td></td>
</tr>
<tr>
<td>Suction casing</td>
<td>A 217 Gr WC 9</td>
<td>A 743 Gr CA-6NM</td>
<td></td>
</tr>
<tr>
<td>Shaft</td>
<td>X 4 Cr Ni 13 4</td>
<td>A 182 Gr F6MN</td>
<td>• High strength</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• High fatigue resistance</td>
</tr>
<tr>
<td>Balance drum</td>
<td>X 20 Cr Ni 17 2</td>
<td>A 276 Type 431</td>
<td>• At least 50 HB hardness difference</td>
</tr>
<tr>
<td>Stationary wear parts</td>
<td>X 20 Cr Ni 17 2</td>
<td>A 276 Type 431</td>
<td>• High erosion resistance</td>
</tr>
<tr>
<td>Stud</td>
<td>36 Ni Cr Mo 16</td>
<td></td>
<td>• High strength</td>
</tr>
<tr>
<td>Static seals</td>
<td>Pure graphite</td>
<td></td>
<td>• Good pressure / thermal resilience</td>
</tr>
</tbody>
</table>
Performance Range

Note: The range chart and the data table show the normal operating range. However, for special cases, the HPT can be adapted in design to cover duties outside of this range.

Operating Data

<table>
<thead>
<tr>
<th>HPT Pump</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump sizes</td>
<td>From 150-260 to 400-482</td>
</tr>
<tr>
<td>Units</td>
<td>Metric units</td>
</tr>
<tr>
<td>Capacities</td>
<td>up to 4000 m³/h</td>
</tr>
<tr>
<td>Heads</td>
<td>up to 4200 m</td>
</tr>
<tr>
<td>Horsepower</td>
<td>up to 27800 kW</td>
</tr>
<tr>
<td>Temperatures</td>
<td>up to 220°C</td>
</tr>
<tr>
<td>Speeds</td>
<td>up to 7300 rpm</td>
</tr>
</tbody>
</table>
Lippendorf—the most modern lignite-fired power plant in the world, located in central Germany’s Saxony region. The new plant is a 2 x 920 MW lignite-fired power plant (2 x 875 MW net electrical power output), commissioned in 1999. Lippendorf delivers 230 MW of district heating to the city of Leipzig. The once-through type boilers have a steam output of 2,420 t/h (supercritical), 267 bar (8932 ft) and 554° C (1029° F). The electrical efficiency is 42.6%, which is at present the world’s highest efficiency for a lignite-fired plant. Much of the design efforts of the Lippendorf plant have been concentrated on reducing environmental impact in accordance with new European Union directives.

Lippendorf, Germany
HPT 400-482 / 6 stage
3468 m³/h (15259 US gpm)
@ 3908 m (12821 ft)
36661 KW (49160 hp) @ 4721 rpm

Boxberg, Germany
HPT 350-440 / 5 Stage
3353 m³/h (14753 US gpm)
@ 4035 m (13234 ft)
36258 KW (48620 hp) @ 5797 rpm

Pulau Seraya Power Station, Singapore
HPT 150-260/1d / 5 Stage
441 m³/h (1941 US gpm)
@ 2154 m (7067 ft)
2890 kW (3875 hp) @ 6364 rpm

Almeria II Power Station, Spain
HPT 300-330 / 5 Stage
1202 m³/h (5291 US gpm)
@ 2333 m (7654 ft)
7900 kW (10600 hp) @ 6200 rpm

West Thurrock, UK
HPT 230-305 / 3 Stage
876 m³/h (3859 US gpm)
@ 1953 m (6408 ft)
4671 kW (6265 hp) @ 7200 rpm

Shajiao “C” Power Station, China
HPT 300-330 / 4 Stage
1327 m³/h (5843 US gpm)
@ 2369 m (7771 ft)
9172 kW (12300 hp) @ 6358 rpm

Lippendorf—the most modern lignite-fired power plant in the world, located in central Germany’s Saxony region. The new plant is a 2 x 920 MW lignite-fired power plant (2 x 875 MW net electrical power output), commissioned in 1999. Lippendorf delivers 230 MW of district heating to the city of Leipzig. The once-through type boilers have a steam output of 2,420 t/h (supercritical), 267 bar (8932 ft) and 554° C (1029° F). The electrical efficiency is 42.6%, which is at present the world’s highest efficiency for a lignite-fired plant. Much of the design efforts of the Lippendorf plant have been concentrated on reducing environmental impact in accordance with new European Union directives.

Lippendorf, Germany
HPT 400-482 / 6 stage
3468 m³/h (15259 US gpm)
@ 3908 m (12821 ft)
36661 KW (49160 hp) @ 4721 rpm

Boxberg, Germany
HPT 350-440 / 5 Stage
3353 m³/h (14753 US gpm)
@ 4035 m (13234 ft)
36258 KW (48620 hp) @ 5797 rpm

Pulau Seraya Power Station, Singapore
HPT 150-260/1d / 5 Stage
441 m³/h (1941 US gpm)
@ 2154 m (7067 ft)
2890 kW (3875 hp) @ 6364 rpm

Almeria II Power Station, Spain
HPT 300-330 / 5 Stage
1202 m³/h (5291 US gpm)
@ 2333 m (7654 ft)
7900 kW (10600 hp) @ 6200 rpm

West Thurrock, UK
HPT 230-305 / 3 Stage
876 m³/h (3859 US gpm)
@ 1953 m (6408 ft)
4671 kW (6265 hp) @ 7200 rpm

Shajiao “C” Power Station, China
HPT 300-330 / 4 Stage
1327 m³/h (5843 US gpm)
@ 2369 m (7771 ft)
9172 kW (12300 hp) @ 6358 rpm
Worldwide Test Facilities
Sulzer operates over 20 test facilities world-wide, suitable for horizontal or vertical, open pit, high flow rate/high-energy and multiphase testing. We have the ability to perform tests at 50 and 60Hz and, depending on the site, are able to operate using diesel engines, gas engines and gas turbines in addition to conventional electric motors. A specialty of Sulzer is the ability to fully string test large high-energy pumps to prove the pump package as a whole to our customers.

This ability is particularly important for critical offshore applications where on-site correction is both expensive and time consuming.

Our gas turbine test stand allows full load string testing of pumps or compressors without having to build the sets at third party sites. We are the only pump manufacturer in the world able to undertake in-house tests of machines generating over 30 MW.

Customer Support Services
Global businesses require local services. Sulzer Pumps is committed to providing local support through our worldwide network of over 50 service facilities.

Retrofit of Existing Barrel Type Boiler Feed Pumps
Applying our unique experience and expertise, we are able to deliver consistently high quality, value-added support. In addition to supplying parts and service for Sulzer equipment, our in-house re-engineering specialists can modernize and retrofit existing boiler feed pumps with the following capabilities and benefits:
• Repair and re-machining of existing pump barrel casings
• Integration of a new Sulzer designed internal cartridge
• Increasing pump efficiencies
• Main piping, foundation and pump drive remain unchanged
• Pumps compatible with existing oil supply system

Reference installations and retrofits:
• Janschwalde Power Station, Germany (12 units)
• Mosenergo Power, Russia (19 units)
• Novocherkasskaja Power, Russia (9 units)
• BHEL, India (12 units)
• Dunamenti Power, Hungary (6 units)
• Ratcliffe, United Kingdom (2 units)

Using root-cause failure analysis, system investigation and materials assessment, retrofit specialists modify installations to meet new duty conditions or to improve operating efficiency. Beyond optimizing performance, retrofitting existing installations results in increased component life and reduced energy consumption. We provide a full range of services for pumps and other associated equipment with local customer service available 24 hours a day, 7 days a week, backed by our service group support teams.
This brochure is a general presentation. It does not provide any warranty or guarantee of any kind. Please, contact us for a description of the warranties and guarantees offered with our products. Directions for use and safety will be given separately. All information herein is subject to change without notice.