Concrete volute pumps are designed for high flow applications, resulting in fewer pumps. This need for fewer pumps reduces overall civil dimensions considerably.

The pump is predominantly produced in concrete, eliminating potential corrosion problems often experienced in corrosive environments. The pump is constructed as an integral part of the pump-house – ensuring consistent civil and mechanical interfaces. After installation almost 100% availability is achieved due to the effective combination of the slower running speed, minimal wear and exceptional reliability, eliminating the need for stand-by units.

Concrete volute designs boast a minimum of 10 years between internal inspections. These inspections can be performed within the volute without removal of the pump cartridge.

Duty Range

Capacity
- Up to 120,000 m³/hr / 530,000 gpm

Delivery head
- Up to 70m / 230 ft

*Available head is related to application flow/speed

Temperature
- Up to 50°C (120°F) in standard configuration

Speeds
- 100 to 350 rpm

Flange drilling
- BS or ANSI

Applications

- Large Scale Cooling Water Duties
- High Flow Water Intake Systems
- High Flow Transfer Duties
- Land Irrigation Schemes
- Land Drainage Schemes
- Dry Dock De-watering Duties
- Flood Control Systems
Concrete volute pumps have several advantages over the conventional tubular casing pump. The main advantages are to be found in construction, total cost, handling, installation and maintenance:

- Vast experience with over 200 concrete volute pumps supplied to date
- Concrete volute option will be suitable for a higher flow per pump, resulting in fewer pumps being required
- Pump casing is predominantly produced in concrete, which eliminates potential corrosion problems often experienced with suspended bowl pumps (especially in hot sea water)
- Lower specific speed results in a slower running speed and shorter submerged setting depth
- Both the above factors will significantly reduce the depth of civil dig and overall land area excavation required for the intake and pump house structures
- The lower specific speed (volute design) pump offers a lower rise to closed valve head, resulting in reduced system pressure rating
- The intake layout proposed by Clyde can cater for any future extension to the intake plant
- Pump construction is concurrent with intake and pump house structures, ensuring correctness of mechanical and civil interfaces
- The combination of the concrete volute pumps’ slower running speed, minimal wear and exceptional reliability eliminates the need for stand-by units
- Low wear leads to negligible spares usage
- Approaching 100% availability is achieved on all installations
- Installed efficiency is higher than conventional bowl pumps - concrete volute pumps are larger, more efficient and do not encounter column or bend losses
- Efficiency levels are maintained over long operating periods, reducing overall power consumption over life of plant
- Real long term power savings leading to high value cost savings over plant life
- Clyde has actual experience of pumps operating in the UK power industry for more than 100,000 hours with no noticeable change in efficiency
- The concrete volute design boasts a minimum of 10–12 years between internal inspections. Bowl pumps require maintenance after 3 years
- Common discharge manifold allows exceptional versatility between pumps and system
- Defined limits of supply on structures/systems supplied by Clyde Pumps
Concrete volute pumps offer advantages over conventional vertical bowl pumps in the following areas:

Construction
- Civil Dig & Land Area
- Design Layout
- Space Restrictions
- System Design Pressure
- Supporting Steelwork Quantity

Long Term
- Maintenance Manpower
- Routine Maintenance Spares
- Major Maintenance Spares
- Reliability
- Component Replacement Costs
- Power Consumption
- Power Costs
- Overall Running Costs
Pump & Drive Arrangements

The concrete volute pump and drive arrangements comprise of –

- A motor directly coupled to the pump shaft
- A motor driving the pump through a speed reducing gearbox
- A diesel engine driving the pump through a speed reducing bevel gear

Direct Drive

- Driving the pump by a directly coupled slow speed motor requires only two major components
- This drive arrangement simplifies installation, maintenance and auxiliary equipment
- Overall noise levels are reduced

Epicyclic Drive

- Gear units are designed to suit motor and pump interfaces
- Gearcases can be designed to support weight of drive motor
- Reduced overall package size
- Coaxial drive train (Motor/Gearbox/Pump)
- High mechanical efficiency of 99%
- Self contained full duty lubrication system
- Reduced noise and vibration
- Transfers thrust, or accepts external thrust via integral thrust bearing
- Eliminates the need for a low speed coupling

Offset Geared Drive

- A gearbox drive arrangement using a higher speed motor is lighter, smaller and generally operates at higher overall efficiency
- Cost of complete pump set is lower
- Cost of the overhead crane for the station may also be lower because of a reduced lifting capacity
CONCRETE VOLUTE PUMP (CR) SYSTEM

Epicyclic Drive

Offset Drive

Direct Drive
Construction

The complete rotating assembly consisting of shaft, impeller, bearings, seal, coupling and optional gearbox, together with the top cover and bearing bracket, are manufactured and delivered to site ready for installation into the built-in seating ring.

The finished machined seating ring is supplied at an early stage for building into the concrete. It forms a permanent structure around which the shuttering is necessary to reproduce the volute and discharge passage shape specified is located.

Stage 1

The draught tube is formed using accurately made shuttering, and concrete is poured up to a level approximately 50mm below the mounting position of the underside of the seating ring.

Stage 2

The seating ring is then positioned above the draught tube. Care is taken to ensure correct orientation and that it is perfectly level before the holding-down bolts are tightened and concrete is poured to the top of the seating ring mounting flange.

Stage 3

When the seating ring is rigidly secured in its final position the volute shuttering can be assembled around it. The discharge piping is then positioned to ensure correct alignment. Where mild-steel tubing is included it should be mounted on top of the seating ring at this stage. Concrete can then be poured, in accordance with good civil engineering practice, up to motor-room floor level.

The volute shuttering is normally made by the civil engineering contractor to specified dimensions and can be re-used for further pumps on the same contract. The shuttering will be inspected in position by a Clyde engineer, prior to the reinforcing bars being positioned and concrete pouring commences.

The passages formed in the concrete should be within a tolerance of ± 0.3 per cent, and have a surface finish equal to good quality commercial cast-iron. This standard presents no difficulties and is necessary to ensure guaranteed hydraulic performance. Wear and life expectancy are excellent; pumps over 35 years old show little sign of wear.
Model Pump Testing

Experience has been gained over many years of testing conventional pumps for large-capacity low-head applications in the Clyde Pumps test house at Cathcart. This experience plays an important part in producing the best concrete volute pump design for specific performance and economic construction to the fullest benefit of our customers.

But, as concrete volute pumps cannot be tested in the works of the manufacturer – because the volute casings are produced on site – scale models of the pumps are constructed and tested in the Clyde Pumps laboratory in accordance with internationally accepted codes of practice. These tests enable the hydraulic characteristics of the full-size unit to be accurately predicted.

Another advantage of model testing is to prove pump performance when modifications to shape, which may simplify civil engineering construction of the pump house, are introduced at the design stage.

A simple sectional arrangement of the model pump is shown in Figure 1. The model impeller is precision cast to obtain a high degree of accuracy with a smooth surface finish. Records of ‘as tested’ dimensions are produced as follows –

- Impeller eye diameter
- Impeller blade angle
- Blade thickness
- Blade pitching
- Impeller & volute surface roughness
- Critical dimensions are recorded (i.e. impeller outlet width, impeller outside diameter, volute throat area)

The volute is cast in epoxy resin inside a fabricated steel housing and made in two halves to facilitate the manufacturing process. The model pump is mounted vertically in a gantry, which also supports a torque meter and drive motor.

The draft tube is manufactured in resin or fibreglass and incorporates windows for qualitative assessments of impeller inlet contours. Wall pressure measurement tappings for assessing the static pressure distribution along its length are provided.

A provisional layout of the test rig is shown in Figure 2 depicting the model pump, draft tube, test pipework and test tank. The suction pipework has the same sectional area as the draft tube entry. A transition section with a diffusion angle of less than 8% is used if necessary to convert from circular to rectangular section.

The model is – as far as is practical – hydraulically identical to the main pump.

All testing on the model is carried out at 4 pole speed using fresh water at ambient temperature (approximately 15°C) such that the model head is similar to the site head.

Flow is measured using an electromagnetic flowmeter installed in the test pipework with adequate straight lengths upstream and downstream of the device.

Suction pressures (Hs) are measured using a mercury manometer and pressure transducer connected to a 4-tapping ring manifold. Discharge pressure is measured using a calibrated standard Bourdon test gauge and a pressure transducer connected to a 4-tapping ring manifold two diameters downstream of the pump discharge (Hd).

A perspex window on the draught tube – or if required a perspex draft tube – allows observation of flow in the region of the draught tube bend using thread tracers or dye injection. The velocity profile at the impeller inlet is established by a Pitot tube traverse.

The draught tube wall static pressure distribution, velocity profile at impeller inlet location and flow pattern in the draught tube is established at the normal duty condition.

Power input to the pump is determined using a torque meter in conjunction with the speed read-out from a digital counter linked to a photo-electric sensor picking up the signal from a reflective marker on the pump shaft.

On completion of the pump performance testing, the suction draught tube is removed and replaced with a metal bend, allowing the required low levels of suction pressure to be gained for NPSH testing. Three sets of test points are measured evenly spaced from 30–120% flow.

As a GRP draft tube lacks the strength required to withstand the vacuum induced during NPSH testing an axi-symmetrical section (simple bend) is used which does not collapse under vacuum.

The NPSH levels measured on test are corrected to take account of the difference in suction losses between the draft tube and inlet bend as measured from a single point head measurement at BEP with an adequate NPSH.

On completion of testing in our laboratory, Clyde Pumps produces model pump performance curves to prove through scaled extrapolation that we meet the required duty.

In this instance the Ns of model used has been tested many times and Clyde Pumps can prove performance of model pump scaled extrapolation on existing concrete volute installations.
CONCRETE VOLUTE PUMP (CR) SYSTEM

Figure 1
Sectional Arrangement of Model Pump

Figure 2
Test Rig Layout
UK Regional Sales contacts
Service and sales coverage:
Scotland, North East region, North West region, West Midlands, East Midlands, South West, South East.

Tel: + 44 141 637 7141 Fax: + 44 141 637 7358 Email: uk@clydepumps.com

Clyde Pumps Ltd Worldwide Sales contacts

Europe
Belgium: Tel: + 32 71 91 94 10 Fax: + 32 71 91 94 30 Email: belgium@clydepumps.com
Estonia: Tel: + 372 625 9570 Fax: + 372 654 1359 Email: estonia@clydepumps.com
Finland: Tel: + 358 9 8330 0600 Fax: + 358 9 8330 0609 Email: finland@clydepumps.com
France: Tel: + 33 688 0801 31 Fax: + 33 950 6291 02 Email: france@clydepumps.com
Germany: Tel: + 49 281 8150 Fax: + 49 281 815 185 Email: germany@clydepumps.com
Norway: Tel: + 47 67 592 150 Fax: + 47 67 592 169 Email: norway@clydepumps.com
Poland: Tel: + 48 32 216 84 12 Fax: + 48 32 216 88 18 Email: poland@clydepumps.com
Russia: Tel: + 7495 967 3453 Fax: + 7495 785 0636 Email: russia@clydepumps.com

Americas
Atlanta: Tel: + 1 770 557 3600 Fax: + 1 770 557 3651 Email: atlanta@clydepumps.com
Brazil: Tel: + 55 19 3841 5086 Fax: + 55 19 3841 5086 (ext 224) Email: brazil@clydepumps.com
Canada: Tel: + 1 800 267 3068 Fax: + 1 866 599 3765 Email: canada@clydepumps.com
Maryland: Tel: + 1 410 368 7000 Fax: + 1 410 368 6721 Email: maryland@clydepumps.com
Oregon: Tel: + 1 503 641 0545 Fax: + 1 503 643 1303 Email: oregon@clydepumps.com
Texas: Tel: + 1 281 446 6765 Fax: + 1 281 446 3952 Email: texas@clydepumps.com

Asia / Australia
Australia: Tel: + 61 2 9757 7400 Fax: + 61 2 9757 7499 Email: australia@clydepumps.com
Beijing: Tel: + 86 10 6598 9500 Fax: + 86 10 6598 9595 Email: beijing@clydepumps.com
India: Tel: + 91 11 4175 5619 Fax: + 91 11 4175 5622 Email: india@clydepumps.com
Shanghai: Tel: + 86 21 6160 6969 Fax: + 86 21 6160 6968 Email: shanghai@clydepumps.com
Singapore: Tel: + 65 6276 7117 Fax: + 65 6278 7117 Email: singapore@clydepumps.com

Middle East / Africa
Abu Dhabi: Tel: + 971 2 631 1959 Fax: + 97 12 635 1242 Email: abudhabi@clydepumps.com
South Africa: Tel: + 27 11 704 0580 Fax: + 27 11 704 0597 Email: southafrica@clydepumps.com

We are constantly endeavouring to improve the performance of our equipment and, as a result, we reserve the right to make alterations from time to time, and equipment may differ from that detailed in this brochure.