

How to select Rotary Lobe Pumps

ZL Series

HOW TO SELECT ROTARY LOBE PUMPS

Water performance selection:

Step 1 – Speed, rpm

Starting from the vertical left hand (flow rate) axis, at the required capacity, plot a line horizontally across to intersect the solid flow/speed performance lines at the differential pressure. At this intersection, plot a line vertically down to the bottom speed axis and read off the pump rpm.

Step 2 - Power, kW

Commencing again from the left hand (flow rate) axis, at the specified capacity, plot a line horizontally across to intersect the dotted flow/absorbed power lines at the differential pressure. At this intersection plot a line vertically upwards to the top absorbed power axis and read off the absorbed kW.

WATER CAPACITY AND ABSORBED POWER GRAPH

Performance curve model ZL-220-34-12.

Rotary Lobe Pumps

For example, 50 LPM, 1 cP against a differential pressure of 3 bar, using a ZL-220 lobe pump:

Steep 1 – Speed

Working from the flow axis at 50 LPM dotted a line horizontally across to intersect the dotted 3 bar, between the 2 bar and 4 bar flow/speed performance lines. Plotting vertically down from this intersection the pump rpm can be read off the speed axis equal to 320 rpm.

Steep 2 – Power

Starting from 50 LPM on the flow rate axis dotted a line horizontally across to intersect the dotted 3 bar, between the 2 bar and 4 bar flow/absorbed power lines. At this intersection dotted a line vertically upwards to the brake horsepower axis and read off the absorbed kW of 0.75.

Viscosity liquid performance selection:

Steep 1 – Speed, rpm

When handling other than water-like liquids the viscosity correction monogram at the top of the performance graph (capacity vs. speed lines) should be used.

Case 1: If viscosity of 1 cP, differential pressure 12 bar then, select the pump speed from the bottom 12 bar line.

Case 2: If viscosity of 300 cP, differential pressure 6 bar then, select the pump speed from the 0 bar line.

Case 3: If viscosity of 20 cP, differential pressure 8 bar then, select the pump speed from the 2 bar line.

It can be seen from the graph ZL-220/34/12 that when exceeding 300 cP the slip in the pump is negligible and the 0 pressure line can be used for any differential pressure.

Steep 2 - Power, kW

To calculate the total power absorbed to move the fluid with different viscosities from water, it is necessary to determinate the viscosity factor "V". Use the next table and future formula to calculate the power.

Graph to determinate the viscosity factor.

Use the next formula to calculate the power:

Where:

$$N = \frac{\left(\left(2 \times P\right) + V\right) \times n \times C_{ZL}}{1000}$$

$$\mathsf{P} = \mathsf{Pressure} \begin{pmatrix} kg \\ cm^2 \end{pmatrix}$$

V = Viscosity factor n = Speed (rpm) C = Flow $\left(\frac{lt}{rev}\right)$

As we know the capacities per revolution of each model from the ZL series, now we can select and determinate the size of the pump:

ZL	110	115	120	220	225	330	340	440	450
C _{ZL}	0.05	0.12	0.21	0.40	0.62	1.02	1.44	2.27	3.34

	Model									
Viscosity (cP)	110	115	120	220	225	330	340	440	450	
			Max	Recom	mended	speed rp	m			
1 - 100	1000	800	800	700	700	600	600	500	500	
100 - 1,000	667	533	533	467	467	400	400	333	333	
1,000 - 5,000	417	333	333	292	292	250	250	208	208	
5,000 - 10,000	250	200	200	175	175	150	150	125	125	
10,000 - 20,000	167	133	133	117	117	100	100	83	83	
20,000 - 50,000	117	93	93	82	82	70	70	58	58	
50,000 - 100,000	83	67	67	58	58	50	50	42	42	

Example:

Select a Rotary Lobe Pump with the next characteristics: cream at 2000 cP, flow required of 70 LPM, against a differential pressure of 8 kg/cm2.

To calculate the pump speed in rpm, divide the 70 LPM among each model's capacity per revolution:

Model ZL	110	115	120	220	225	330	340	440	450
C _{ZL}	0,05	0,12	0,21	0,40	0,62	1,02	1,44	2,27	3,34
Speed rpm	1400	583	333	175	113	69	49	31	21

Compare every pump model and determinate the best choice, using the maximum recommended speed. For this case, a ZL120 pump is the best choice with a speed of 333 rpm.

To calculate the power use the formula using the data:

$$P = 8 \begin{pmatrix} kg \\ cm^2 \end{pmatrix}$$

$$V(2000 \text{ cP}) = 5.6$$

$$n = 333 \text{ (rpm)}$$

$$C_{ZL}(ZL120) = 0.21 \begin{pmatrix} lt \\ rev \end{pmatrix}$$

$$N = \frac{((2 \times 8) + 5.6) \times 333 \times 0.21}{1000} = 1.51 \text{ Kw}$$

QUESTIONNAIRE

Customer: _					
				Date:	
Quantity:		set			
Pumps/Blend	ler:	Model no.			
Capacity:				_ Units	
Pressure hea	ad:			_ Units	
Impeller diam	neter:			_ Units	
Product:					
Specific grav	ity:			_ Units	
Concentratio	n:			_ Units	
Viscosity:				_ Units	
Temperature				_ Units	
Hard particles	s:				
Mechanical	seal (shaft se	al)			
Seat ring:		Ceramic	SiC		TC
Rotary ring:		Carbon	SiC		_ TC
O-rings:		NBR	EPDM		Viton
Water flushin	g:	Yes	No		
Electric mot	or				
Power:		RPM	Hz		Volt
Туре:		TEFC	EG3		D2G4
Without moto	or	Yes	No		
Connections	6				
inlet:	Dimensi	on:	Туре	ə:	
Outlet:	Dimensi	on:	Туре	e:	
Special desi	gn				
Drain on casi	ing version:	Yes	No _		Position no
Base mountir	ng version:	Yes	No _		
Frame mounting version:		Yes	No _		
Transportable version:		Yes	No _		
Remarks:					

Signature